4,332 research outputs found

    UK innovation support for energy demand reduction

    Get PDF

    Innovation in the energy sector: advancing or frustrating climate policy goals?

    Get PDF
    The energy sector is well known for the relatively modest level of resource that it devotes to research and development (R&D). However, the incremental pace of energy innovation has speeded up in the last decade as measured by public sector R&D budgets, deployment of alternative technologies and novel institutional arrangements. While much of this effort has been targeted at technologies that promise to reduce carbon dioxide (CO2) emissions, there have also been major innovations that extend the fossil fuel resource base and reduce the cost of extraction. The last decade’s developments can be seen in terms of a challenge to the existing energy paradigm in parallel with a renewed innovative response focusing on conventional fuels and technologies. This paper examines this tension, by exploring the expectations of a variety of organisations in both the public and private sector regarding energy sector developments and by analysing private sector expenditure on energy research and development (R&D) and public sector budgets for energy R&D and demonstration (RD&D). Scenarios and outlook exercises that have been published since 2013 reveal a wide range of beliefs about the future development of the energy system. The contrasting views underpinning the different scenarios are reflected in divergent patterns of R&D investment between the private and public sectors. There appears to be a tension between the drive to transform energy systems, on the part of public bodies, mainly motivated by the need to combat global climate change, and private sector activity, which tends to reinforce and extend existing patterns of energy provision. The paper addresses, but not answer definitively, the key question as to whether technological change is enabling or frustrating ambitious carbon goals

    Antimicrobial activity of an iron triple helicate

    Get PDF
    The prevalence of antibiotic resistance has resulted in the need for new approaches to be developed to combat previously easily treatable infections. Here we investigated the potential of the synthetic metallomolecules [Fe2L3]4+ and [Cu2(L’)2]2+ as antibacterial agents. Both molecules have been shown to bind DNA; [Fe2L3]4+ binds in the major groove and causes DNA coiling, whilst [Cu2(L’)2]2+ can act as an artificial nuclease. The work described here shows that only [Fe2L3]4+ is bactericidal for Bacillus subtilis and Escherichia coli. We demonstrate that [Fe2L3]4+ binds bacterial DNA in vivo and, strikingly, that it kills B. subtilis cells very rapidly

    Photic effects on sustained performance

    Get PDF
    Research is described which evaluates manipulating environmental light intensity as a means to attenuate fatigue. A counter balanced, within-subjects design was used to compare nine male subjects exposed to dim (100 lux) and bright (3000 lux) light conditions. Oral temperature values were greater for the bright light group over the dim light condition. Melatonin levels were suppressed by bright light treatment. Also, the frequency of eye blink rate was less for subjects during bright over dim light exposure. Light exposure was without effect on subjective fatigue. However, irrespective of light condition, significant effects on confusion, fatigue, and vigor mood dimensions were found as a result of 30 hour sleep deprivation. The findings suggest that bright lights may be used to help sustain nocturnal activity otherwise susceptible to fatigue. Such findings may have implications for the lighting arrangements on space flights during the subjective night for astronauts

    Determination of step rate thresholds corresponding to physical activity intensity classifications in adults

    Get PDF
    Current recommendations call for adults to be physically active at moderate and/or vigorous intensities. Given the popularity of walking and running, the use of step rates may provide a practical and inexpensive means to evaluate ambulatory intensity. Thus, the purpose of this study was to identify step rate thresholds that correspond to various intensity classifications. Methods: Oxygen consumption was measured at rest and during 10 minute treadmill walking and running trials at 6 standardized speeds (54, 80, 107, 134, 161, and 188 m∙min-1) in 9 men and 10 women (28.8 ± 6.8 yrs). Two observers counted the participants’ steps at each treadmill speed. Linear and nonlinear regression analyses were used to develop prediction equations to ascertain step rate thresholds at various intensities. Results: Nonlinear regression analysis of the metabolic cost versus step rates across all treadmill speeds yielded the highest R2 values for men (R2 = .91) and women (R2 = .79). For men, the nonlinear analysis yielded 94 and 125 step∙min-1 for moderate and vigorous intensities, respectively. For women, 99 and 135 step∙min-1 corresponded with moderate and vigorous intensities, respectively. Conclusions: Promoting a step rate of 100 step∙min-1 may serve as a practical public health recommendation to exercise at moderate intensity

    Classical and molecular epidemiology of campylobacter, in particular Campylobacter jejuni, in the Alberta beef industry

    Get PDF
    This research used classical and molecular epidemiology tools to assess the potential importance of feedlot cattle as Campylobacter reservoirs. The project was conducted from November 2004 to September 2005 in southern Alberta. Fresh pen-floor fecal samples were collected from commercial feedlot cattle near slaughter weight in seven feedlots. Overall, 87% of 2,776 fecal samples were culture positive for Campylobacter species (86% of 1,400 in winter, 88% of 1,376 in summer), and 69% of 1,486 Campylobacter positive isolates were identified as Campylobacter jejuni. After accounting for clustering within pen and feedlot, the number of days-on-feed and feedlot size were associated (p ¡Ü 0.05) with Campylobacter species isolation rates. Retail ground beef was collected from 60 grocery stores (four chains, three cities). None of the 1,200 packages were culture positive for Campylobacter species. Polymerase chain reaction (PCR) results from a subset of samples (n=142) indicated that 48% of packages were positive for Campylobacter DNA. By species, 14.8% (21/142), 26.8% (38/142) and 1.4% (2/142) of packages were PCR positive for C. jejuni, C. coli and C. hyointestinalis DNA, respectively. The collection period (1, 2, 3 or 4) was associated (p ¡Ü 0.05) with the odds of detecting Campylobacter species DNA using PCR. Oligonucleotide DNA microarrays were used as a platform for comparative genomic hybridization (CGH) analysis of 87 C. jejuni isolates (46 bovine, 41 human) obtained within the same geographical regions and time frame. Of the 13 CGH clusters identified based on overall comparative genomic profile similarity, nine contained human and cattle isolates, three contained only human isolates, and one contained only cattle isolates. In addition, human clinical and feedlot cattle C. jejuni isolates were compared on a gene-by-gene basis and only a small number of the 1,399 genes tested were unequally distributed between the two groups (p ¡Ü 0.05). The high isolation rates of Campylobacter species and C. jejuni reported here may have implications for food safety, public health and environmental contamination. Our findings suggest that feedlot cattle and human C. jejunistrains are very similar and may be endemic within southern Alberta

    Electron Capture Dissociation Mass Spectrometry of Metallo-Supramolecular Complexes

    Get PDF
    The electron capture dissociation (ECD) of metallo-supramolecular dinuclear triple-stranded helicate Fe2L3 4 ions was determined by Fourier transform ion cyclotron resonance mass spectrometry. Initial electron capture by the di-iron(II) triple helicate ions produces dinuclear double-stranded complexes analogous to those seen in solution with the monocationic metal centers CuI or AgI. The gas-phase fragmentation behavior [ECD, collision-induced dissociation (CID), and infrared multiphoton dissociation (IRMPD)] of the di-iron double-stranded complexes, (i.e., MS3 of the ECD product) was compared with the ECD, CID, and IRMPD of the CuI and AgI complexes generated from solution. The results suggest that iron-bound dimers may be of the formFeI 2L2 2 and that ECD by metallo-complexes allows access, in the gas phase,to oxidation states and coordination chemistry that cannot be accessed in solution

    Compressed Genotyping

    Full text link
    Significant volumes of knowledge have been accumulated in recent years linking subtle genetic variations to a wide variety of medical disorders from Cystic Fibrosis to mental retardation. Nevertheless, there are still great challenges in applying this knowledge routinely in the clinic, largely due to the relatively tedious and expensive process of DNA sequencing. Since the genetic polymorphisms that underlie these disorders are relatively rare in the human population, the presence or absence of a disease-linked polymorphism can be thought of as a sparse signal. Using methods and ideas from compressed sensing and group testing, we have developed a cost-effective genotyping protocol. In particular, we have adapted our scheme to a recently developed class of high throughput DNA sequencing technologies, and assembled a mathematical framework that has some important distinctions from 'traditional' compressed sensing ideas in order to address different biological and technical constraints.Comment: Submitted to IEEE Transaction on Information Theory - Special Issue on Molecular Biology and Neuroscienc
    • …
    corecore